Shape Refinement through Explicit Heap Analysis

نویسندگان

  • Dirk Beyer
  • Thomas A. Henzinger
  • Grégory Théoduloz
  • Damien Zufferey
چکیده

Shape analysis is a promising technique to prove program properties about recursive data structures. The challenge is to automatically determine the data-structure type, and to supply the shape analysis with the necessary information about the data structure. We present a stepwise approach to the selection of instrumentation predicates for a TVLA-based shape analysis, which takes us a step closer towards the fully automatic verification of data structures. The approach uses two techniques to guide the refinement of shape abstractions: (1) during program exploration, an explicit heap analysis collects sample instances of the heap structures, which are used to identify the data structures that are manipulated by the program; and (2) during abstraction refinement along an infeasible error path, we consider different possible heap abstractions and choose the coarsest one that eliminates the infeasible path. We have implemented this combined approach for automatic shape refinement as an extension of the software model checker BLAST. Example programs from a data-structure library that manipulate doubly-linked lists and trees were successfully verified by our tool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbolic Shape Analysis Diploma Thesis

Shape analysis deals with the synthesis of invariants for programs manipulating heap-allocated data structures. Explicit shape analysis algorithms do not scale very well. This work proposes a framework for symbolic shape analysis that addresses this problem. Our contribution is a framework that allows to abstract programs with heap-allocated data symbolically by Boolean programs. For this purpo...

متن کامل

Integrating Shape Analysis into the Model Checker BLAST

Many software model checkers are based on predicate abstraction. Values of variables in branching conditions are represented abstractly using predicates. The strength of this approach is its path-sensitive nature. However, if the control flow depends heavily on the values of memory cells on the heap, the approach does not work well, because it is difficult to find ‘good’ predicate abstractions ...

متن کامل

Lazy Shape Analysis

Many software model checkers are based on predicate abstraction. If the verification goal depends on pointer structures, the approach does not work well, because it is difficult to find adequate predicate abstractions for the heap. In contrast, shape analysis, which uses graph-based heap abstractions, can provide a compact representation of recursive data structures. We integrate shape analysis...

متن کامل

Symbolic shape analysis

The goal of program verification is to ensure software reliability by establishing a mathematical proof which guarantees that the software behaves correctly. Program analysis tools assist the developer in the verification process. Ideally a program analysis should be applicable to a wide range of verification problems without imposing a high burden on its users, i.e., without requiring deep mat...

متن کامل

Learning to Verify the Heap

We present a data-driven verification framework to automatically prove memory safety and functional correctness of heap programs. For this, we introduce a novel statistical machine learning technique that maps observed program states to (possibly disjunctive) separation logic formulas describing the invariant shape of data structures at relevant program locations. We then attempt to verify thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010